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THE APPLICABILITY OF A HEREDITARY MODEL 
OF WEAR WITH AN EXPONENTIAL KERNEL IN THE 
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An analytic solution is obtained for the contact problem for a stiff thermally insulated plate and an elastic heat-conducting layer, 
subject to the conditions of  wear and frictional heating, when the contacting bodies are not drawn nearer. The evolution of the 
contact pressure, the temperature and the wear are traced. Conditions for the occurrence of thermoelastic instability are 
established. The conditions under which the wear model considered is applicable are given. © 2000 Elsevier Science Ltd. All 
rights reserved. 

1. INTRODUCTION 

As a rule, the models of wear used in contact problems assume a finite algebraic dependence of the 
rate of wear on the pressure P, the rate of slip Vand other parameters [1-3]. However, under variable 
loading conditions in the tribosystem, relaxation effects may also be observed [4]. In general, the wear 
relationship is then a functional of the hereditary type, the form of which can be found experimentally. 
The hereditary model takes account of the relaxation of the contribution to the overall wear over a 
time t from all of the preceding perturbations at instants of time x using a memory function K( t  - ~). 
In particular, a wear relationship with an exponential kernel 

t 
UW (t) = K u V  S P(x )K( t  - x)dx, K( t  - x) = e -q'(t-x) (1.1) 

0 

has been used in [5] which describes, as was noted in [6], processes with a restricted amount of wear. 
It is characteristic in the case of this relationship that the rate of wear 

aUW (t)l  ~ = -~UW (t) + KuVP(t) 

will not be "a priori" positive for all values of the parameter y" and the wear coefficient K u. 
The temperature and contact pressure fields and the field for the amount of wear of an elastic heat- 

conducting layer which is compressed by a stiff, uniformly sliding, thermally insulated plate are 
investigated below under conditions of frictional heating. It was found that an hereditary wear model 
of the form of (1.1) can be used for any relations between the input parameters of the problem. The 
conditions for the occurrence of frictional thermoelastic instability (FFEI) of the system are also found. 
By the latter term, we mean an unbounded increase in the contact characteristics (temperature, pressure 
and wear) when there is a small change in the input parameters. 

Thermoelastic instability has been investigated in structures of the type of end and radial gaskets 
when there are axially symmetric perturbations [7]. The conditions for the occurrence of a thermal 
explosion (an unlimited contact temperature) and thermal power stability (a decrease in the pressure 
and temperature at the contact with time) have been considered in the problem of the contact interaction 
of an elastic layer with a stiff punch [8] and in the case of the non-ideal thermal contact of two 
compressible uniformly sliding layers [9], under the assumption that the temperature dependence of 
the friction coefficients and wear resistance is linear; the heat conduction in the layers was assumed to 
be quasisteady. The problem of the stability of the quasisteady-state solution of the thermoelastic wear 
problem has also been considered [10]. 
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Fig. 1. 

2. F O R M U L A T I O N  AND S O L U T I O N  OF THE P R O B L E M  

Suppose an elastic heat conducting layer of thickness (v is the Poisson's ratio, E is Young's modulus, 
and 7% k and a are the heat transfer, sufficient thermal conductivity and coefficient of linear expansion, 
respectively) is rigidly fastened along its base and compressed on its upper face by an amount U = UocPu(t) 
by means of a rigid thermally insulated infinite plate (Fig. 1). The plate slides in the direction of the Z 
axis at a constant velocity V. Due to friction forces, heat will be evolved and wear will occur in the contact 
region between the plate and the layer, and heat transfer will occur in accordance with Newton's law 
between the base of the layer and the surrounding medium. 

It is required to determine the temperature increment field T(X, t), the thermoelastic displacements 
U(X, t), W(X, t) along the X and Z axes, respectively, and the amount of wear of the layer U'V(t). 

The problem can be reduced to solving the system of differential equations of Lam6-Neumann 
quasistatic uncoupled thermo-elasticity [11] 

~ _ _  3 2 
~2 l + v  ~ T(X,t), 0 

3X 2 U(X, t) = a 1 - V bX ~ W(X, t) = 

~x2r(x,t)--k-~ r(x,t), O < X < L ,  O<t<t~ (2.1) 

with the mechanical conditions 

U(0,t) = W(0,t) = 0, Gxz(L,t ) = fP(t) 

U(L,t) = -Uogu(t)+ UW(t), 0 < t < t c (2.2) 

the thermal conditions 

a 
-~X T(O, t) = hT(O, t) 

~ ~-~-T(L,t) = fVP(t),  0 < t < t c 
3X 

(2.3) 

and the initial conditions 

T(X, 0) = 0, 0 < X <L (2.4) 

Here, f is the friction coefficient, h is the heat transfer coefficient, and the contact time tc is 
defined as the time during which the contact pressure P(t) = --qxx(L, t) is non-negative (P(t) >I 0 when 
t ~ (0, tc]). 

The normal and shear stresses for the layer are found using the Duhamel-Neumann relations [11] 

E r l - v O U  arl Gxz = E OW 
6xx = i ± 2 v D - - ~ v  aX J' 1+----~ ~X 

(2.5) 
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Taking relations (2.5) and boundary conditions (2.2) into account, we find from Eq. (2.1) 
that 

LL o j 

w ( x ,  t) = ~ yr'(t)x 

E(1- v) l + v  
E l =  , 0~1 = O~ 

(1 + v)(1 - 2v) 1 - v 

We now introduce the dimensionless quantities 

X t 6 ,  U Vfl2 uW U TM 

T P °=K' P=K' 

and the characteristic parameters 

L 2 k _ Uo E~Uo 
t , = T ,  V , = - -  T , - - -  P ,=  

L '  oqL'  L 

We then obtain the heat conduction boundary-value problem 

~x 2 0(x, x) = 0(x, x), 0 < x < 1, 0 < x < x c 

~x0(0,x) = 0(0,x) Bi 

-~O(l,x) =u p(~'), < "r < "r,. 0 

0(x, 0 )=  0 , 0 < x <  1 

where the dimensionless pressure and wear are respectively equal to 

I 
p(x) = q~v (x) - u w (x) + J o(~, t)a¢; 

0 

u" (x) = ~v I p('q)K(x - "q)dq 

e a k  _ E, Kv 
f i  = ~,(1 - 2v) '  ~ - " ' ~ '  Y = T't,, Bi = 

(2.6) 

(2.7) 

(2.8) 

We will obtain the solution of boundary-value problem (2.7), (2.8) using a Laplace integral transforma- 
tion with respect to the time x where, in order to transfer into the domain of the originals, we make 
use of the theorems for the expansion and multiplication of transforms [12]. As a result, we obtain the 
solution in the form 

O(x, ~) = vq~ v (~), - ~  g(x, ~) 

P(Z) = 9v (z) + v~o u (~), d G(z) (2.9) 

d 
u'(lr) = v e v ( r ) .  ~ I(T) 

where 
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g(X,"C) =gl (X)+  ~.~ A3(X'Sm'------~) e " :  
m=l SmAt($m) 

G(.c)=Go + : A4(Sm) eS=X 
=1 SmAt(s m) 

GO Bix ~c 1 
= , 11 = gl(x)= ' Go ol -o  

= Bi l + x B i  VO~c , V o -  B i g =  
vl ~ - ~  l + B i / 2 '  l + B i / 2  

Al(s,n ) = Bi C,, + sinS m, A2(sm) = S m - Bi C ° 

~ A l ! S m )  eSmX 

v o 

A3(X, Sm)=(Sra + y)(BiS],~ +Cx), C ° =--(C m - l ) l s  m 

A4 (Sm) -~- (Sm + '~)A2 ($m) -- ~ I  (Sin) 

A'(sm) = 2 { (sm + T)[(Bi+ 1)Sin + Cm - vs~t~ [Cm - S m  + Bi(Sm + 2C°m )]] + 

+2[al  Cs m ) - v a  2 (s m )1 + ~v [(1 + Bi)S m + C m ] } 

D m s h  Dra, S~n = DTn I sh(Dmx), C m = c h  D m, C~n = ch(Dmx ), D m = a/-~m am -1 x x 

(2.10) 

An asterisk denotes convolution of functions with respect to time and Sm are the roots of the characteristic 
equation A (s) = 0 (m = 1, 2 . . . .  ). 

We will now analyse these roots. Im Sm -- 0, Re Sm< 0 when m = 3, 4 . . . . .  and, when m = 1, 2, the 
roots, depending on the initial parameters  of the problem, are located in the right or left half of the 
complex plane s. When a~ = aJ2,3, the roots sl and s2 are identical and, when ~ = a9 6, the real part  of 
the complex conjugate roots sl and s2 is equal to zero. When ~) = Vl, one of the roots is equal to zero. 

The case when y < y.. When ~ < ~., where 

v0 l + 5 B i / 6 + 5 B i  2/24 T 
Y* =~-12, Bi2 = (1+Bi/2)2 , ~* =~c 7* 

and v < D 2 and a~ 3 < a9 < Vl, the roots are negative, when v2 < v < I-)3, they are complex conjugate 
with a negative real part  and when 1) 1 < z) the root Sl is positive and the root s2 is negative. When ~. 
< ~ < ~ ,  a~ < Vb, the roots are complex conjugate with a negative real part, when Vb < ~ < V3 they 
are complex conjugate roots with a positive real part  and when ~ > ~3 the roots are positive. However, 
if, additionally, a~ > a91, then the root s2 becomes negative. When ~ < ~ < ~1, ~ < ~b the roots are 
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Fig. 2. 



Applicability of a hereditary model of wear with an exponential kernel 799 

complex conjugate with a negative real part, when 13b < V < 133 they are complex conjugate roots with 
a positive real part and when 133 < 13 the roots are positive. When ~ < ~ and max (v2, 0) < v < v3 if 
v3 > 0, or max(1)2, 0) < 13 < oo, if 133 < 0, the roots are complex conjugate with a negative real part, 
and they are negative when 0 < ~3 < 13. 

The change in the real and the negative parts of the roots Sl and s2 as a function of the dimensionless 
velocity 13 is shown in Fig. 2 for the values ), = 0.5, Bi = 1.43. The roots I and/"  (2 and 2') correspond 
to the real and imaginary parts of the root Sl (s2). The solid and dashed lines refer to the values 

= 0.7 and ~ = 1.4, respectively. 

The case when "~ > q(.. When ~ < ~ the roots are negative if 13 < 1)1. If u > 131 the root s 1 is positive 
and the root s2 is negative. When G < ~ the roots are negative for an arbitrary velocity ag. 

In the neighbourhood of zero, the roots sl and s2 can be written in the explicit form 

sl, 2 = - & +  t5 (2.11) 

& = b/(2a), ~ =1 & I ~/i - 4ac I b 2 

a = a 2 ( V a - V ) ,  b = b 2 ( o b - v  ), C=C2(1JI--U), a 2 = ( ~ a - ~ ) B i  4 

b 2 = ~ b - ~ ,  C 2 = ( ~ c - ~ ) v  O, ~ b = l + T B i 4 ,  ~a=l+~(Bia/Bi4 

= - - ,  T+v  0 l + B i / 6  1+Bi /4  
lia ~b ii b = , Bi s = , Bi 4 

a 2 b 2 120(1 + Bi/2) 6(1 + Bi/2) 

The change in the real and imaginary parts of the approximation of the roots Sl and s2 using formulae 
(2.11) is shown as a function of the dimensionless velocity 13 for ~ = 0.7 and ~ = 1.4 by the dot-dash 
curves in Fig. 2. 

Relations (2.11) enable us to write approximate expressions for the values of Vm, m = 2, 3 and ~1- 

3. T H E O R E T I C A L  ANALYSIS  OF T H E  R E S U L T S  

As an example, we will investigate the characteristics of thermoelastic contact in a wear process at 
a value of the compression of the layer which is constant with respect to time, that is tpu(z ) = H(x), 
where H(.) is the Heaviside function. 

The following asymptotic forms of the temperature, pressure and wear at sort time were obtained 
by an analytic investigation of the properties of solutions (2.9) 

0(1, x) = 2u ~ + o ( x  ~ ) ,  p(x)  = 1 +u (1 - ~)x + o ( x  2 ) 

(3.1) 

uW('C) =v ~'c+O('c2); ~ = ~r (v(1-v) / [ f txk( l+v)]  

Relations (2.11)-(3.1) and the graphs in Fig. 2 enable us to predict the behaviour of the characteristics 
of the thermoelastic contact of the layer under conditions of frictional heating and wear. 

The parameter  ~ characterizes the mutual effect of the wear and thermal expansion. 
When there is no wear (~ = 0 or T = oo) at slip rates below the critical value 130 the contact pressure 

and temperature reach steady values 

x B i +  1 = V~o O c ( x ) = ~ p c  u 
Pc v o - v  ' Bi 

with time since, due to heat transfer, the inflow and outflow of heat in the system mutually compensate 
for one another. As the velocity 13 approaches its critical value 1)0, the time required to reach steady- 
state conditions increases. 

At velocities above the critical velocity (1) > 130), the temperature and contact pressure increase 
exponentially, that is, there is frictional thermoelastic instability (FTEI).  

In the case of abrasive wear (~/= 0) or 0 < ~ < 1 (when the thermal expansion predominates over 
the value of the wear), for 13 ~< 1)2 the contact time "c c = oo and the contact characteristics tend with 
time to their own steady values Pc = 0, Oc(x) = 0, u w = 1. The time required by the system to attain a 
steady state increases when 13 ~ 132. If 1) 2 < 13 < c3, the contact time is limited. The minimum contact 
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time will occur at velocities ~ ~-- (~2 + a~3)/2, that is, when the quantity Im Sl reaches its maximum value. 
As ~ approaches ~3, the maximum values of the pressure, temperature  and wear increase. F r E I  sets 
in at a velocity ~ > a~ 3. 

When ~/> 1 (when the wear predominates  over the value of the thermal expansion), for ~ ~< ~2 the 
W ~  characteristics of  the contact tend with time to the steady values Pc = 0, 0~(x) = 0, uc - 1. When a~/> 

~2, the contact t ime xc is limited although a steady-state solution formally exists. Henceforth,  "formally" 
means that, on reaching a steady-state solution, the function characterizing the pressure or the rate of  
wear changes sign. As the slip rate increases, the contact time decreases. 

In the general case when T < T., ~ < ~* and when ~ < ~1, the contact t ime xc = oo, and the contact 
characteristics tend, with time, to their own steady values 

v i x Bi+ 1 (3.2) 
pc = , 0c (x)=  pcu, uT=gu Pc 

v I - v  Bi 

The time taken to reach steady conditions increases as a~ tends to ~1. When ~ > 1)1, there is FFEI.  
When ~. < ~ < ~ ,  a~ < a~b, the steady solution (3.2) formally exists (on reaching it, the rate of  wear  
changes sign); when ub < a~ < ~3, the contact t ime is limited and the rate of  wear  also changes sign. 
When ~ > ~3, there is FFEI .  For ~ < ~ < ~1, ~ < ~3, the contact time is limited and the rate of  wear 
is negative. FTEI  is observed when ~ > a~ 3. When ~ < ~, the steady solution (3.2) formally exists for 
all ~ (the rate of  wear  also change sign). 

Hence, when the system is not under conditions of FTEI  an when 0 < 3( < T*, ~* < ~, the wear function 
is not a monotonically increasing function and the use of  the hereditary model (1.1) is inadmissible. 

In the general case when T > T*, ~ < ~ ,  ~ < a~l the contact characteristics tend with time to the steady- 
state solution of problem (3.2). There  is FTEI  when ~ > ~1. When ~ < ~, the contact pressure and 
temperature  reach a steady state with time for all ~; in this case the contact pressure does not exceed 
the initial value. 

When g/> 1, with t ime the contact pressure always monotonically tends to zero (unlike the case when 
0 < ~ < 1 when it has a maximum). 

4. N U M E R I C A L  R E S U L T S  

In order to illustrate the above theoretical analysis of the behaviour of the contact characteristics a 
numerical solution of the problem for a layer of steel was obtained (a = 14 x 10 -6 °C -1, K = 
21 Wm-I°C -1, k = 5.9 x 10:6 m2/s, v = 0.3, and E = 190 x 10 9 Pa) when L 3 × 10 -2 m, Bi = 1.43, 
U0 = 10-6 m and f = 10 -2 for values of the dimensionless slip velocity ~). The values of the parameters for 
rendering quantities dimensionless are then as follows: t. = 153 s, V. = 1.97 x 10 -4 m/s, P. = 8.53 x 106 Pa and 

• o I "" 1 • B T = 1.28 C- .  The cntlcal va ue of the parameter ? = 0.936 corresponds to the value i = 1.43. The value of 
the parameter T = 1.2 was taken from the condition for the use of the hereditary wear model (1.1) to be admissible. 
Then, ~ = 1.44. The case when the amount of wear predominates over thermal expansion (~ = 1.5) is considered. 

Graphs of the dimensionless amount of wear u w and the dimensionless contact pressure p against the 
dimensionless time z are shown in Figs 3 and 4 for various values of the dimensionless velocity. It is clear that 
there is intensive wear during the initial stage, which leads to a sharp fall off in the contact pressure. With time, 
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the rate of wear falls off as a consequence of running in, the pressure begins to increase and, together with the 
amount of wear, reaches the steady values (3.2). 

5. C O N C L U S I O N S  

An analytical solution has been obtained for the contact problem of a rigid thermally insulated plate 
and an elastic heat-conducting layer under conditions of wear and frictional heating in the layer when 
the contacting bodies are not drawn nearer. The evolution of the contact pressure, temperature and 
wear has been traced. 

The determined analytical values for the characteristic values of the velocity ~)m, rn = 1, 2, 3 and the 
parameters ~/,, ~,  ~,, ~1 enable one to predict the behaviour of the characteristics of the frictional contact 
with time. 

The conditions for the occurrence of frictional thermoelastic instability (FTEI) 

~,~ [0;~.], ~E [0;~.], u e [Ul;OO) 

~'~ [0;'t,], ~ e  [~.;¢~), u e [03;00) 

: re  [~r.;*o), ~ [0;~c), u E [ol;oo) 

have been established for the frictional contact model considered. 
In the case of abrasive wear (~/= 0), the critical value of the velocity l)3, at which FI'EI occurs, increases, 

and when ~ I> 1 (when wear predominates over thermoelastic expansion) FFEI completely disappears. 
Hence, abrasive wear emerges as a stabilizing factor. 

Conditions have been obtained for the applicability of the hereditary wear model. 
The generally accepted opinion that instability occurs when the zeros of the characteristic equation 

are located in the right half of the complex plane of the Laplace transform parameter needs to be revised 
in the case of this model of frictional contact. These roots must have a zero imaginary part. The existence 
of an imaginary part leads to boundedness of the contact time. 
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